

## An Alternative Synthesis of **Dolby-Weinreb Enamine en Route to** Cephalotaxine

Bao-Chun Ma,<sup>†</sup> Yong-Qiang Wang,<sup>†</sup> and Wei-Dong Z. Li\*,†,:

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China, and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

liwd@lzu.edu.cn; wdli@nankai.edu.cn

Received January 24, 2005



A novel alternative synthesis of the Dolby-Weinreb enamine (2) was achieved from readily available amino dione 6 by a mild transannular Clemmensen-Clemo-Prelog-Leonard reductive rearrangement, which thus constitutes a formal total synthesis of cephalotaxine.

Dolby-Weinreb enamine (2), a benzazepine heterocycle, has been a key advanced intermediate in the classical Weinreb synthesis<sup>1</sup> of cephalotaxine (CET, 1), which is the core structure of the structurally unique antileukemia Cephalotaxus alkaloid ester derivatives.<sup>2</sup> Enamine 2 was also synthesized by other groups<sup>3</sup> following the pioneering works by Dolby and Weinreb in this field, via different annulation approaches, as outlined in Figure 1, respectively.

We have recently disclosed<sup>4a</sup> two novel approaches for the total synthesis of CET, among which a mild transannular reductive rearrangement (Clemmensen-Clemo-



FIGURE 1. Syntheses of Dolby-Weinreb enamine (2) en route to CET.



FIGURE 2. Previous synthesis of the benzazepine ring system (ABCD) of CET (ref 4a).

Prelog-Leonard rearrangement)<sup>4a</sup> of cyclic α-amino ketone **3** was employed as one of the key steps  $(3 \rightarrow 4)$  for the construction of the substituted benzazepine ring system (ABCD)<sup>5,6</sup> of CET (cf. Figure 2).

(4) (a) Li, W.-D. Z.; Wang, Y.-Q. Org. Lett. 2003, 5, 2931 and references therein. For other recent synthesis of CET, see also: (b) Planas, L.; Perard-Viret, J.; Royer, J. J. Org. Chem. 2004, 69, 3087. (c) Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.; Tanabe, G.; Ishibashi, H. J. Org. Chem. **2005**, 70, 1922. (d) Li, W.-D. Z.; Ma, B.-C. J. Org. Chem. **2005**, http://dx.doi.org/10.1021/j00480460. (5) For other related rearrangement approaches for the ABCD benzazepine ring system of CET, cf.: (a) p 239 of ref 2b (eq 1 below; Hudlicky, T.; Hiranuma, H.; Hiranuma, S. Unpublished results, 1983). (b) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T. Org. Lett. 2002, 4, 885 (eq 2 below):



(6) For reviews on benzazepine alkaloid synthesis, see: (a) Kametani, T.; Fukumoto, K. *Heterocycles* **1975**, *3*, 931. (b) Liang, X.-T. *J. Chin. Chem. Soc.* (*Taipei*) **1995**, *42*, 601. For a recent example of this approach, see: (c) Liu, Y.-X.; Liang, X.-T. *Chin. Chem. Lett.* **2001**, 12.7.

10.1021/jo050143+ CCC: \$30.25 © 2005 American Chemical Society Published on Web 04/16/2005

<sup>&</sup>lt;sup>†</sup> Lanzhou University.

<sup>&</sup>lt;sup>\*</sup>Nankai University. (1) (a) Weinreb, S. M.; Auerbach, J. J. Am. Chem. Soc. **1975**, 97, 2503. (b) Weinreb, S. M.; Semmelhack, M. F. Acc. Chem. Res. 1975, 8, 158

<sup>(2)</sup> For general reviews, see: (a) Huang, L.; Xue, Z. In *The Alkaloids*;
Brossi, A., Ed.; Academic Press: New York, 1984; Vol. 23, pp 157–226. (b) Jalil Miah, M. A.; Hudlicky, T.; Reed, J. W. In *The Alkaloids*;
Brossi, A., Ed.; Academic Press: New York, 1998; Vol. 51, pp 199– 269.

<sup>(3)</sup> Cf.: (a) Dolby, L. J.; Nelson, S. J.; Senkovich, D. J. Org. Chem. 1972, 37, 3691. (b) Weinstein, B.; Craig, A. R. J. Org. Chem. 1976, 41, 875. (c) Tse, I.; Snieckus, V. J. Chem. Soc., Chem. Commun. 1976, 505. (d) Fang, F. G.; Maier, M. E.; Danishefsky, S. J.; Schulte, G. J. Org. Chem. **1990**, 55, 831.

## SCHEME 1. Reductive Rearrangement of Amino Dione 6



SCHEME 2. A Possible Mechanistic Pathway for the Conversion of  $6 \rightarrow 7$ 



With readily available allyl-substituted cyclic  $\alpha$ -amino ketone 3 in hand, we obtained<sup>4a</sup> the corresponding amino dione **6** by Wacker oxidation, which was subjected to the reductive rearrangement in hoping to effect a tandem rearrangement-intramolecular Mannich-type cyclization to pentacycle 5 via a hypothetic intermediate i (cf. arrows in Scheme 1). To our surprise, reduction of amino dione 6 with zinc powder in hot glacial acetic acid produced the Dolby benzazepine 7 (hydrochloride salt, mp 262-264 °C, lit.<sup>3a</sup> mp 265–266 °C) as the major product (50%) and a minor product of known<sup>4a</sup> amino ketone 8 (15%). The identity of structures 7 and 8 was fully confirmed spectroscopically by comparison with reported data.<sup>1,3,4a</sup> Oxidative dehydrogenation<sup>1,3</sup> of 7 with  $Hg(OAc)_2$  in warm aqueous acetic acid afforded the labile title enamine 2 (34%, mp 81-82 °C, lit.<sup>3a</sup> mp 82-83 °C).

An apparent mechanistic pathway to benzazepine **7** was depicted in Scheme 2, in which an acid-catalyzed retro-Mannich-reductive rearrangement pathway ( $\mathbf{6} \rightarrow \mathbf{ii} \rightarrow \mathbf{iii}$ ) predominated and ultimately led to **7**. The minor reductive rearrangement product **8** was formed through the normal transannular reductive rearrangement of the cyclic  $\alpha$ -amino ketone unit possibly via the reduction of intermediate **i**. In fact, our previous efforts for preparing the cyclic  $\alpha$ -amino ketone **iii**, which in principle would be an ideal cyclic  $\alpha$ -amino ketone substrate for effecting the designated Clemmensen-Clemo-Prelog-Leonard reductive rearrangement to benzazepine **7**, from a diester precursor **9**<sup>4a</sup> by Dieckmann condensation (KO'Bu, toluene, reflux), resulted in the formation of an autoxidative decarboxylation<sup>7</sup> product **10**<sup>8</sup> instead. Although the ex-

pected Mannich-type cyclization was not observed, the alternative synthesis of reductive rearrangement products 7 and 8 constitutes a formal synthesis of CET.

In short, an alternative synthesis of the Dolby– Weinreb enamine (2), a classical intermediate en route to CET synthesis, was achieved from readily available cyclic amino dione **6** by a mild Clemmensen–Clemo– Prelog–Leonard reductive rearrangement. This facile transannular rearrangement would find further useful applications in the synthesis of polycyclic *N*-heterocycles.<sup>9</sup>

## **Experimental Section**<sup>10</sup>

Preparation of 8,9-Methylenedioxy-2,3,5,6,11,11a-hexhydro-1H-pyrrolo[2,1-b][3]benzazepine 7 (Dolby Benzazepine). Amino dione 6 (99.0 mg, 0.33 mmol) was dissolved in 5 mL of glacial acetic acid and treated with Zn dust (296 mg) in one portion. The mixture was then brought to 100 °C and vigorously stirred for 3 h under N<sub>2</sub>. The acetic acid was evaporated in vacuo, and the residue was poured into 5 mL of saturated aqueous NaHCO<sub>3</sub> and extracted with CHCl<sub>3</sub> (10 mL  $\times$  3). The resulting organic extracts were combined, washed with water and brine, and dried. Evaporation of the solvent in vacuo followed by chromatographic purification on silica gel gave the Dolby amine 7 as a colorless hygroscopic gum (38 mg, 50%) and amino ketone 8 (15 mg, 15%) as a colorless film. The corresponding hydrochloride salt of cyclic amine **7** was obtained by titration with concentrated HCl in chloroform to give a colorless solid, mp 262–264 °C (lit.<sup>3a</sup> mp 265–266 °C). 7: IR (KBr) ν 2923, 1505, 1484, 1243, 1039, 936, 863 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub> )  $\delta$ 1.47 (br s, 2H), 1.71 (br s, 2H), 1.80-1.95 (m, 1H), 2.18-2.25 (m, 1H), 2.26-2.60 (m, 1H), 2.61-2.65 (m, 2H), 2.90-3.12 (m, 4H), 5.89 (s, 2H), 6.55 (s, 1H), 6.68 (s, 1H) ppm;  $^{13}\mathrm{C}$  NMR (75 MHz, CDCl<sub>3</sub>) δ 25.0, 25.3, 29.4, 31.5, 52.8, 56.8, 63.6, 100.9, 105.2, 108.7, 127.7, 136.7, 146.1 (2C) ppm; EIMS (m/z, %) 231 (M<sup>+</sup>, 50), 230 (100), 202 (44), 189 (13), 175 (39); HRMS (ESI) m/z obsd 232.1334 ([M + H]<sup>+</sup>, calcd for  $C_{14}H_{18}NO_2$ 232.1332).

Preparation of 8,9-Methylenedioxy-2,3,5,6-tetrahydro-1H-pyrrolo[2,1-b][3]benzazepine 2 (Dolby-Weinreb Enamine).<sup>3a</sup> A solution of the Dolby benzazepine 7 (60.0 mg, 0.26 mmol) in 2% aqueous acetic acid (3 mL) was treated with Hg-(OAc)<sub>2</sub> (700 mg, 2.20 mmol) at room temperature. The reaction mixture was brought to 100 °C and stirred for 2 h under N<sub>2</sub>. The reaction mixture was filtered; the filtrate was basicified with 50% aqueous sodium hydroxide to pH 11 and extracted with EtOAc (10 mL  $\times$  3). The combined organic phases were washed with brine, dried, and concentrated to give a pale yellowish gum (20 mg, 34%). The gum solidified when kept in the cold, mp 81-82 °C (lit.<sup>3a</sup> mp 82–83 °C). 2: IR (KBr)  $\nu_{\rm max}$  2903, 1641, 1603, 1498, 1481, 1418, 1345, 1269, 1034, 928, 863 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) & 1.86-2.05 (m, 2H), 2.11-2.28 (m, 2H), 2.31 (t, J = 6.9 Hz, 1H), 2.59-3.02 (m, 3H), 3.44-3.57 (m, 2H), 5.19 (br s, 1H), 5.92 (s, 2H), 6.54 (br s, 2H) ppm;  $^{13}\mathrm{C}$  NMR (75 MHz, CDCl<sub>3</sub>) & 22.3, 28.4, 33.2, 46.4, 47.1, 101.6, 107.1, 108.3(2C), 146.9 (2C), 166.2, 177.0 ppm; EIMS (m/z) 229 (M<sup>+</sup>, 71), 228 (M

 <sup>(7)</sup> Cf.: (a) Vaccher, C.; Berthelot, P.; Debaert, M.; Barbry, D. J.
 Heterocycl. Chem. 1984, 21, 1201. (b) Kawase, M. Chem. Pharm. Bull.
 1997, 45, 1248.

<sup>(8)</sup> Spectral data for **10**: IR (KBr)  $\nu_{max}$  2930, 1730, 1645, 1611, 1480 1268, 1035 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.21 (t, J = 7.2 Hz, 3H), 1.88–1.95 (m, 2 H), 2.35 (t, J = 7.3 Hz, 2 H), 2.85 (t, J = 6.6 Hz, 2 H), 3.49 (t, J = 6.6 Hz, 2 H), 3.54 (t, J = 7.2 Hz, 2 H), 4.08 (q, J =7.2 Hz, 2 H), 5.95 (s, 2 H), 6.57 (s, 1 H), 7.48 (s, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  14.2, 23.0, 28.2, 31.6, 46.1, 46.6, 60.4, 101.4, 106.8, 108.1, 123.6, 133.4, 146.8, 150.3, 164.1, 173.2 ppm; EIMS m/z [M<sup>+</sup>] 305 (64), 260 (33), 218 (81), 204 (100), 162 (28), 134 (19); HRMS (EI) m/z observed 306.1332 ([M + H]<sup>+</sup>, calcd 306.1336 for C<sub>17</sub>H<sub>18</sub>NO<sub>3</sub>). (0) Studies of the part this is a series of a series of a series of the set o

<sup>(9)</sup> Studies along this line are ongoing in our laboratory.

<sup>(10)</sup> For General Experimental Procedures, cf.: Supporting Information of ref 4a.

## JOC Note

- 1, 100), 214 (30), 149 (81); HRMS (ESI)  $\it{m/z}$  obsd 230.1178 ([M + H]^+, calcd for  $C_{14}H_{16}NO_2$  230.1176).

Acknowledgment. We thank the National Natural Science Foundation (Distinguished Youth Fund 29925204 and QT 20021001), Fok Ying Tung Education Foundation (Fund 71012), and Ministry of National Education (Funds 99114 and 2000-66) of China for financial support. The Cheung Kong Scholars program and the Outstanding Scholars program of Nankai University are gratefully acknowledged.

**Supporting Information Available:** <sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, and HRMS spectrum of compound **7**. This material is available free of charge via the Internet at http://pubs.acs.org. JO050143+